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Outline

• Brief overview of the concept of distributed engine control

• Challenges for modeling distributed systems and creating a versatile 

hardware-in-the-loop (HIL) system

• Migration from a centralized to a distributed modeling approach

– Decomposing an engine model

– Modeling of control system components

– Creating a library of re-usable modeling components

– Establishing a template for modeling distributed systems

– Working toward a hardware-in-the-loop (HIL) system

• Simulation Benchmarking and Comparison

• Real-time simulations with our Decentralized Engine Control Simulation 

System (DECSS)
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Distributed Control
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• Signal processing duties are moved 

to smart transducers

• Digital data is transferred between 

control components over a digital 

network.

– Signal susceptibility to noise is reduced

– Makes the control system more modular.

– Off-loads some processing from the 

control unit

– Network connecting the control 

components becomes important

• Data loss, time delays, and data 

corruption

sensorsactuators
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Working Toward a HIL System for DEC
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• Challenges in modeling and simulating distributed systems

– Improved fidelity of the control system

– Numerical precision of the data used in simulations should reflect reality

– Reliable network models are needed

– Simulations should be able to mimic the asynchronous nature of an actual 

distributed control system with different sampling periods.

• Challenges in creating a versatile HIL system

– Proprietary models and code must remain protected

– Should not be limited by their model development environment choice

– Common interfaces

– Ability to dependably run in real-time and interface with real hardware.
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Migration from Centralized to Distributed Simulations
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• The starting point was based around C-MAPSS40k

– Serves as the engine model for demonstrating DEC

– Use of the system is not limited to C-MAPSS40k or the 

MATLAB/Simulink environment it exists in.

• Unstructured Simulations (Breaking apart C-

MAPSS40k)

– Decompose the model and simulate each major 

component

• Engine Model (EM)

• Control Model (CM)

• User-Interface (UI)

– Each model is capable of being hosted on separate 

machines

– A pre-defined set of data is transparently shared between 

the models

Engine 

Model

Control 

System 

Model

User 

Interface
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Migration from Central to Distributed Simulations

• Benefits of decomposing the 

model

– Modularity – can easily replace 

one component with another

– No specific software 

requirements

– Proprietary models can be 

integrated in a simulation and 

remain protected

• Issues

– Modularity adds some overhead 

that slightly increases execution 

time

– Controlling asynchronous 

systems is not intuitively obvious
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Control System Component Model Development
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• Modeling changes occur in the control model which contains:

– Sensor nodes

– Actuator nodes

– Controller

– Controller network

• The basic functions of the control system were identified, modeled, and 

entered as library functions

• The library functions simplify the construction of more complex models 

and control architectures.

• Of special interest was the sensor and actuator models

– Sensor & actuator models in C-MAPSS40k are first-order transfer functions – not 

sufficient for smart nodes in DEC applications
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Control System Component Model Development
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• How to model smart nodes?

– IEEE 1451 specification with the following components:

• Transducer hardware

• Signal conditioning, conversion, and processing 

components

• Network connection interface

• Used Simulink library to build-up smart node 

models

• Added smart sensor and actuator models into 

the simulation (distributed simulation) 

• Included a simple network model

– Randomly delays packets using a lognormal 

distribution to determine how much to delay the packet

– Randomly drops a packet using a uniform distribution
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Simulation Progression Summary
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Microcontroller Extensions to the Simulation
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• Processor-in-the-Loop

– Smart nodes are simulated 

on their own dedicated 

microcontroller

– Microcontrollers run on their 

own clock better illustrating 

the asynchronous nature of 

the control system

– No physical network or 

network model implemented

• Pseudo-HIL

– Brings a physical multidrop

network into the loop

– Simulation results may aid in 

the development of a network 

model

Master Node
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Simulation Benchmarking – Test Profile 

• Each model described was simulated with the same flight profile
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Simulation Benchmarking – Model Outputs 
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Real-Time Simulation with the DECSS
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• DECSS hosts the control model (CM) in real-time simulations and perhaps 

other models as well

– Each executable can have CPU, priority, and execution rate assigned

• SIMulation Workbench is used to setup, execute, and control the simulation as 

well as collect data

– Real-time data analysis and plotting available

– Can export data for analysis using another program
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Real-Time Simulation with the DECSS
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Taking Advantage of Multiple Frequency Based Schedulers
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• Hardware sampling rates are not considered in the current control model

– May operate asynchronously

– May operate at different rates larger than the control interval

• DECSS has two, 8-core processors, each having multi-threading 

capabilities

• Each control element model becomes a process operating within the 

domain of a frequency based scheduler

– 16 cores can be utilized to host the processes so that they emulate the 

asynchronous nature of a physically distributed control system

– Processes do not need one common step-size (brute force)  run more efficiently

– Gives complete control over the simulation

• SIMulation Workbench currently limits the user to using 1 frequency 

based scheduler

– Efforts will be put toward resolving this issue 
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Hardware-In-the-Loop Capability
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• Hardware-in-the-loop capability opens up collaboration opportunities

• DECSS can/will provide all electrical analog signals and control network 

communication interfaces to test hardware control elements.

• Plans are being made to use the DECSS functionality testing smart node 

hardware (Sporian Microsystems SBIR)

• Once functionality is demonstrated:

– Studies can be conducted to

• evaluate different control architectures and control networks

• test control system hardware

• develop and test new control algorithms for distributed systems

– From these studies better models can be developed for the control system 

components and the controller network

• Enable a faster and cheaper design process for smart nodes, control networks, and the 

overall distributed control system
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Summary

• A structured methodology was followed to decompose the C-MAPSS40k 

engine system simulation into functional elements

• Libraries of these functional elements have been developed to create 

any engine system control architecture

• Several architectures have been created and validated against the 

original baseline engine system simulation

• Preliminary work has been started to investigate the asynchronous 

nature of distributed systems using microcontroller hardware

• These modeling techniques are now being applied to the DECSS which 

employs real-time parallel processing to simulate the asynchronous and 

multi-rate nature of distributed systems
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Questions/Discussion
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